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1. Php:  Condens hialler 4 (1992) 218S2199. Printed in the UK 

Symmetry aspects in spin-polarized relativistic electronic 
structure calculations based on the Green function method 

G Hormandinger and P Weinberger 
Institute for Technical Electrochemistry, lbhnical University Vienna, Getreidemark 9, 
A-1060 Vienna. Austria 

RSEeived 8 May 1991, in final form 9 September 19% 

AbsIracL The consideration of spin-orbit coupling in spin-polarized electronic structure 
calculations leads to magnetic anisotropies and reduces the s p m e u y  of the problem. 
The theory of magnetic groups is required to make full use of the remaining symmetry. 
A systematic method is presented to treat this problem in the framework of the Green 
function method. An application to the magnetocptalline anisotropy energy of Fe fails 
to converge numerically but meals where this effect originates as a function of reciprocal 
space vector and energy. 

1.. Introduction 

The description of magnetic phenomena in solids in the itinerant electron picture 
implies a spin-polarized formulation of the band structure problem. There are quite 
a few effects which also require the consideration of spin-orbit coupling, such as the 
magnetocrystalline anisotropy, orbital magnetism, and magneto-optical properties. 

In general, any method of solving the electronic structure problem in periodic 
solids requires some way of sampling the Brillouin zone (BZ). In the absence of mag- 
netic effects, this can be reduced by symmetly considerations to just one irreducible 
part of the BZ (IBZ). "k ing the exchange splitting inlo account but ignoring the 
spin-rbit interaction (the semi-relativistic approximation) still permits this way of 
proceeding. In the relativistic scheme, spin-rbit coupling is treated implicitly from 
the start and only a non-spin-polarized calculation, Le. ignoring the exchange splitting, 
allows one to reduce the Brillouh zone integration in that way. 

Consideration of both spin-orbit coupling and exchange splitting reduces the 
symmetry of the problem which means that now more than one IBZ must be taken 
into account (see e.g. Cracknell 1970). For band structure methods like W O ,  APW 
or KKR this merely means that the computational effort increases but the formalism 
is unchanged. Essentially the same is true for the Green function method, but here 
greater care is required because one has to take into account the antilinear properties 
of some of the remaining symmetries. 

In the following, we will develop a systematic way of treating the magnetic sym- 
metry for the Green function method, along with a prescription of the set of IBZ 
over which one has to integrate. Certain matrix properties of the scattering path 
operator, a representation of the Green function, will thus become obvious. We 
employ a relativistic scheme but the group theoretical considerations are also valid 
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in a non-relativistic spin-polarized Green function formalism, where the spin-orbit 
coupling is treated as a perturbation. In section 3, we apply this formalism to the 
magnetoclystalline anisotropy energy (MAE) of BCC Fe. We locate the crucial points 
in its calculation both in k space and as a function of the energy. Conclusions are 
summarized in section 4. 

G Hdrmandinger and P Weinbetger 

2. Magnetic symmetry in the Green function method 

In order to treat the effects of spin polarization in the context of relativistic density 
functional theory, one generally uses an effective magnetic field Eeff  which couples 
to the spin only (MacDonald and Vosko 1979). This field is assumed constant in 
orientation but varies as a function of space. By splitting the Dirac Hamiltonian I? 
into a non-magnetic term Ha and the magnetic contribution 8,. fi can be written 
as (Strange el a1 1984, Ebert 1988) 

where 

eh 6E,, +--. 2mc 6nz 
gdf = B e x t  

Consider first the symmetry properties of the non-spin polarized case, i.e. the Hamil- 
tonian H,,. We assume a crystal structure with a symmorphic space group and 
concentrate on the point group of the problem. Let G denote the point group of 
unitary operations (proper and improper rotations). The operation of time reversal, 
8, also leaves ria invariant. Therefore, the full symmetry point group of Ho, denoted 
by G, is twice as large as G. It is a magnetic point group of type 11, a so called grey 
Shubnikov group: 

G = G +  OG. (3) 

If, additionally to time reversal 8, the potential is symmeaic under space inversion 
I ,  we have at least twofold degeneracy everywhere in the Brillouin zone, the well 
known Kramers degeneracy. In the relativistic formalism employed here, this double 
degeneracy shows up explicitly since the number of basis functions is doubled as 
compared to the non-relativistic case, while the number of energy bands is the same. 

Let us now inspect the magnetic term, k,. The unitary operations g E G, 
which leave the direction of the magnetic field B invariant, form a subgroup H in 
G. Since the time reversal 0 reverts the orientation of E ,  anti-unitaty elements Qg 
are permissible if their unitary part g cancels this reversal. We denote by r the 
subgroup of G which preserves B up to the sign. If there is an operation in r which 
changes the sign of B ,  then it can only be a twofold proper or improper rotation 
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(a so called bilateral operation, see Altmann 1986) with an axis perpendicular to B. 
This particular twofold rotation, C,,, does not exist in general hut only for special 
orientations of B relative to the crystal axes. However, in the cases of B pointing 
in the cubic [Gill], [lll], and [Oll] directions, there is at least one such C,, so 
we will assume its existence in the following. The point group M which leaves the 
complete Hamiltonian go + h, invariant is a type 111 magnetic point group, a so 
called black-and-white Shubnikov group. It is given by 

M = H + B(r - H ) .  (4) 

Because H is a subgroup of r, we can decompose r into right cosets of H using 
C,, as coset representative: 

r =  H +  HC,,. (5) 

Since G 3 r 3 H, the unitary point group G can be decomposed into cosets in the 
following way: 

where nr = IGl/lrl and the group order of a given group A is denoted by [Al. 
The coset representatives gi are not uniquely defined since any product y g i  with an 
element y E r can sewe as a representative of the same coset. The gi rotate B 
out of its original orientation. As an illustration, some examples of these groups are 
shown in table 1 for the cubic case. 

The quantity central to the Green function method is the site-diagonal scattering 
path operator r ( E )  (see e.g. Rulkner and Stocks 1980). In the case of an infinite 
crystal, i.e. translational invariance, it is given by an integral over the Brillouin zone. 
We shall now make use of the above group decomposition to replace this integral 
by a number of integrals over irreducible parts of the Brillouin zone such that this 
number is as small as possible. In the following, 7 denotes the site-diagonal scattering 
path operator, f the single-site scattering matrix, 5 the KKR structure constants, and 
D a transformation matrix. The energy argument of 7, t and E is left implicit. Then 

T = L, d3k ~ ( k )  (7) 

T ( k )  = [t-' - in1 - 5(k)]-' (8) 

where K. = fi. The integral over the full Brillouin zone (BZ) can be considered 
as a sum over integrals over all irreducible parts of the Brillouin zone (IBZ). If lBZl 
denotes a special IBZ, then all other IBZ can be generatecl from it by some proper or 
improper rotation R E G. Denoting these IBZ by lBZB, we have 

IBZR = {Rk I k E IBZ,) R E G. (9) 

Using the transformation propcrties of the structure constants (see appendix 3), 

B( Rk) = D( R )  B ( h )  D( R-')  (10) 
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the integral over IBZR is given by 

QR = D(R) lBz, d3k [D(R- ' )  t - '  D ( R )  - in1  - B ( k ) ] - '  D(R- ' ) .  (11) 

In the non-magnetic case, the single-site scattering problem is symmetric under all 
R E G and therefore Q R  is nothing but D ( R )  QE D(R-') ,  where E refers to the 
identity element in G. Summing over all R E G leads to a matrix structure of T 
which reflects the point group symmetry G (Weinberger 19W). 

In the magnetic case, the t matrix depends on the orientation of E and is invariant 
only under the elements of the magnetic group M defined in equation (4), half of 
which are anti-unitary. However, because of the need to transform the IBZ only with 
unitary elements R E G, we will use the unitary group r rather than M to reduce the 
Brillouin zone integral in (7). Only then we will make use of the close relationship 
between r and M to replace the effect of C?, by that of 0, thus introducing anti- 
unitary elements as well. (This complication does not arise in the band structure 
methods mentioned in the introduction, because constant energy surfaces, considered 
as threedimensional objects, have the unitary point symmetry r rather than M. The 
energy eigenvalues themselves are given in general by the zero of some determinant, 
and all that the time reversal does to the corresponding matrix is essentially replacing 
it by its transpose. This has no influence on the position of the energy band so one 
can get off without explicit consideration of 8).  

Consider first those elements R E C which can be written as R = hg,, h E H 
(see equation (6)). From equation (11) it follows that 

QR = D ( h )  Qg, D ( h - ' )  (12) 

i.e. for each coset representative gi there are 1x1 IBZ, the integrals over which are 
related by transformations with elements of H. The integral Qs, has to be evaluated 
numerically for each coset T g i  in G. 

Next, we consider those elemens R E G which can be written as R = hC,,g;. 
Equation (11) gives 

QR = D(hC,,g;) / d3k [D(g;'C;i) t- '  D(Cz,g;) - i d  - B ( k ) ] - '  
IBZi 

x D(g;'C;ih-').  (13) 

Since C,,O is a symmetry operation of the Hamiltonian, we can replace the twofold 
rotation of t-' by a time reversal transformation according to equation (A9) in 
appendix 1. The structure constants B ( k )  arc Hermitean and invariant under the 
combined operation of time reversal 0 and inversion 1:t 

~ ( k )  = D ( ( e I ) - l )  ~ ' ( k )  D * ( e I )  (14) 

Both the Hermitean property and equation (14) are restricted to real values of the 
energy; their combination, however, 

~ ( k )  = D ( ( u ) - l )  ~ ~ ( k )  o*(er) (15) 

t See e.g. Holnvarth (1974) who gives [he same expression bur without a matrix notation. 
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is also valid in the complex energy plane (here we used D'(0-*) = D + ( 0 ) ;  the 
superscript T denotes transposed matrices). In terms of equation (A9) in appendix 1 
for the t matrix, and using the fact that 0 commutes with all point group operations, 
equation (13) can be written as 

G Harmandinger and P Weinberger 

Q R  = D ( h )  D(Ct) Q:% D*(CC1) D(h- ' )  (16) 

where the operation C, is defined as 

CzL0-'I. 

In obtaining (16), we have also assumed invariance of .t under space inversion I. Care 
must be taken to obey the multiplication rules of the magnetic co-representations (see 
appendix 2). Note that the integral Q,, is the same as in equation (12) which means 
that no additional numerical work is required. Similar to the nonmagnetic case, we 
can express the BZ integral as a sum over group operations. Our irreducible part of 
the Brillouin zone now consists of the I B Z ~ ,  for all cosets i of the group r in G. 
Since there is some freedom in choosing the coset representatives, the choice of the 
IBZg, is not unique. Let us denote the integral over this enlarged IBZ by Q: 

n. 

Q = CQg,. 
i=1 

It is this quantity which has to be computed numerically. The total BZ integral is 
then given by 

7 = D ( h )  [Q t D(C, )  QT D'(C;')] D ( h - I )  
h E H  

T 
= D ( h )  Q D ( h - ' )  t D(C,)  [E D ( h )  Q D(h- I ) ]  D+(C;l) .  

h E H  h E H  

(20) 

The last step (interchanging the h and C,) is possible because H is a subgroup of 
index 2 in r and therefore a normal subgroup, and C,, is an element of r. For a 
normal subgroup, all left cosets coincide with the corresponding right cosets, thus the 
sum over transformations hC,, is identical to the sum over C,,h. 

With equation (20) we have arrived at a formulation which requires only nr  = 
IGl/lrl numerical integrations. This is the same as in the band structure methods, 
as it should be since the the symmetry group A4 is of the same order as the unitary 
group I'. Moreover, the explicit form of the expressions permits us to investigate the 
matrix properties of T for certain orientations of the magnetic field. Consider the case 
of Be,, pointing in the z direction. If we choose C?, to be C,,, the transformation 
matrix D(C,) (see appendiw 2, equation A24) becomes -i times the unit matrix and 
7 is seen to be explicitly symmetrized. There seems to be an inconsistency because 
if we choose CzL to be C,, instead of C,,, or C,, or C,,, the matrix D(C, )  
is no longer proportional to the unit matrix, but involves a phase factor $?+, for 
each element ( K N ,  KIN') of the transformed matrix (see table 2). However, smce in 
this particular case the matrix structure of 7 is such that only matrix elements with 
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p' = p, p' = p j: 4 are non-zero (Strange el a1 1989a), the phase factor bgy, for 
these elements is always unity. This has to be compared to a magnetic field pointing 
in the [Ill] direction. The only C,, perpendicular to the z axkt is C2&. There are 
now several elements non-zero with ( p  - p')  mod 4 # 0, so the phase factors bgz 
are different from unity and 7 is no longer a symmetric matrix. Similar arguments 
apply to the [ O l l ]  case, where we have to use C2e This behaviour is similar to that 
of the single-site t matrix (see appendix 1). 

Table 2 The phase factors +,,p, which arise if a nialrix is lransfonned with D(Ct), 
where Ct = CZLB-II and C21 is perpendicular lo the z axis. g - p' is of modulo 4. 

Ca1 p - p ' ) = o  I 2 3 

Cl.. 1 - 1  I - 1  
CZY 1 1 1 1  
Cl, I i -1 -i  
c 2 b  1 -i -1 i 

3. The magnetocrystalline anisotropy energy of Fe 

The problem of magnetocrystalline anisotropy has been treated extensively in the 
past. Quite recently, there where a few attempts to calculate the anisotropy energy 
of the magnetic elements Fe, CO and Ni from first principles (Fritsche et a1 1987, 
Strange et a1 1989b, Daalderop et al 1990, Guo et a1 1991). 

The anisotropy energy is given as the difference of the total energies corresponding 
to different orientations n of the magnetization. It is a common approach in density 
functional theory to make use of the so called force theorem and thus to replace 
the difference of total energies by the difference of the eigenvalue sums. Using the 
density of states (DOS) la,( E) for a given n vector, the magnetocrystalline anisotropy 
energy (MAE) is given by 

In the framework of multiple scattering theory, the DOS is given in terms of the 
scattering path operator T (  E) discussed in the previous section: 

(U) 

where the 2 and J are scattering solutions at energy .E which at the origin are 
regular and kregular, respectively (see Faulkner (1979) for the non-relativistic case, 

t Of course, lhe reslriction of C21 lo lie in lhe xy plane is entirely a matter of convenience in order 
to have a simple form for Ihe rotation matriu. 
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Schadler et al (1987) or Strange er ai (1989a) for the relativistic case). The scattering 
path operator is evaluated at complex energies to smear out the integrand in k 
space. Thus, the energy integrations over n( E) and En( E), required to determine 
the Fermi energy and the eigenvalue sum, are replaced by contour integrations in 
the complex plane. Here, the second term in equation (23) is no longer purely 
real, as it is on the real axis, and must be taken into account. However, one can 
avoid its calculation by splitting the Green function into single-site-scattering and 
back-scattering parts (see e.g. Pinski and Stocks 1985, Akai 1989): 

G Hiirmandinger and P Weinberger 

G = @ + G ~  (24) 

G b ( P , T ' , E )  = z K ( T )  [ r K K ' ( E )  - t K K , ( E ) ]  Z$,(T')' (2.5) 

c ( T , T ' ,  E )  = z K ( r )  t K K , ( E )  Z$,(T') - z K ( r )  J:(V') 
K K '  K 

Kk" 

Gs does not require any Brillouin zone integration and can readily be calculated for 
real energies, where the second term of Equation (25) is real and does not contribute 
to the density of states. The part Gb has to be evaluated for complex values of the 
energy, where the integrand of the  Brillouin zone integral equation (7) is smeared 
out. Thus, the energy integrals of equation (21) for the eigenvalue sums and similar 
ones for the determination of the Fermi energy are split into an integral along the 
real axis with an integrand corresponding to equation (Z), and a contour integral 
with an integrand corresponding to equation (26). We chose a rectangular contour 
starting below the bottom of the valence band. 

Strange et a1 (1989a) have described how to find the Fermi energy by returning 
close to the real axis at an estimated value of EF, calculating T( E) at a few points 
parallel to the real axis and obtaining the last part of the contour by analytic con- 
tinuation from these points. In our calculation, the imaginary part of the contour 
was only about 6 mRyd (0.004 dimensionless units), so the short vertical part of the 
contour was determined by analytic continuation from the horizontal part, using a 
back-folding technique of Eschrig et al (1986). The Fermi energies, and thus the 
rectangular contours, for the two magnetizations were determined separately. 

The potential used in this calculation is the spin-polarized potential of BCc Fe by 
Moruzzi et al (1978). The computational effort involved in this kind of calculation 
prevents us from iterating the potential to self-consistency. An illustration of the 
influence of spin-orbit coupling is given in figure 1, where the cnergy bands along 
thc coordinate axis (rH) show differences up  to 0.1 eV as a function of the relative 
angle to the magnetization. This is remarkably much bigger than the MAE which 
experimentally is found to be -1.4 @ e x  In figure 2 some of these encrgy differences 
are shown in morc detail. The region in k space with the most pronounced band 
deformations and thus contributions to the MAE is found to be on the k coordinate 
axes at about 0.7 k H ,  where k, is the reciprocal vector pointing from r to H, and 
somewhat lcss in the coordinate planes around these regions. Figure 2(b) shows 
the correct degeneracics: with a magnetization pointing along the z axis, the two 
axes perpcndicular to it are degenerate to each other but diffcrcnt from the IC, axis. 
With a magnetization in the [ I l l ]  direction, all the coordinate axes in k space are 
degenerate. 

The 82 integral equation (7) was performed using the method of special directions 
(Fehlner and Vosko 1976) and the closely related prism method (Stocks et ai 1979). 
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(a) bcc Fe, B <a011 

( b )  bcc Fe, k ~ 1 0 0 ,  
B ( I l l r  B i007r 

* *  Figure 1. Energy band slruclwe of wc Fe, calculated with 
a spin-polarized relativistic KKR program using the potential 
of Moruei et 01 (1976). (o)The high symmetry direction TH 

f ,. .. I (the coordinate axis) parallel (letl) and perpendicular (right) 
to the direction of the magnelization. (b) The k, axis for the 
magnelkation pointing in the [111] (left) and [OOl] directions 

_. . *. 1 . I . ,. 
., . . .. 4 

H r (right). 

(4 (b)  

k = (O,O,O) k = (0.7,O.O) 

B <001r B r l t l r  B rOOlr 

$' 
(4 
k = (1.0.0) 

B q 1 1 1 ,  B <001r B c l l l r  

E Cit E Cz= Cw Cz. E C:t G E C* Cw Ce, 

Figun 2. The inlluence of the direction OC magnelization on the energy eigenvalues 
a1 some k points situated on the coordinate ayes in k space. (a )  The Gamma point. 
(b) In the region of largest band deformalions. For each magnetization direction, the 
eigenvalues are shown for all d i k e n t  inequivalent IBZ. The group operations below are 
lhe comesponding coset representatives of the group r in G. (c) The point H a1 the 
Brillouin zone boundaty. 

This method has been applied previously to the anisotropy problem in Ni (Strange 
et a1 1989b). It is well known that the crucial point in computing the MAE is the 
numerical precision of the BZ integral. For orientations of the magnetization along 
[OOl] and [111], the calculation was performed even with 210 special directions in 
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.00005 

0. 

Figure 3. The calculated values of the magnetocryslalline anisotropy energy between 
(OOll and [lll] magnelbtionr. plotted as a function of the square root of the number 
01 spcial directions in the le?, which is a measure Cor the angular density of k poinu. 
The data points correspond to 21, 36. 55 and 210 directions per IBZ 0 values obtained 
with the method of special directions. x: values obtained by correcthg the integral 
along one of the special directions (see t a t ) .  The horizontal broken line indicates the 
experimental value of - 1.4 IteV 

one IBZ However, as can bc seen from figure 3, this was still not enough: the 
calculated values of the MAE are an order of magnitude larger than the experimental 
value. The reason for this seems to be that even with many directions, none of the 
k rays samples directly the boundaries of the iBz where the main contributions to 
the MAE arise. Replacing only one of the directions, that one which is closest to the 
coordinate axis in k space, by an average over directions within the boundary planes 
nearby, we obtain a coarsely corrected value which shows a remarkably large shift in 
the right direction, considering the small percentage of reciprocal space covered by 
this procedure (figure 3). Clearly, the method of special directions is unable to give 
a precision as high as required for the magnetic anisotropy problem. 

DOS(O0  1)-DOS( 1 1 I) 
n 
0 0 1  I 

-8 - 6  - I  -2 0 

E l e v )  
Figure 4. The difference between the densitis of slate for magnetizations along the 
(0011 and [ l l l l  directions. The corresponding scattering path operator was calculated 
using 210 directions in the IBZ. 

Figure 4 shows the differcnce of the DOS for the two magnetization directions. 
The difference is strongly oscillatory and leads to a cancellation effect when integrated 
over. This explains thc small values of the MAE as compared to the shifts in the 
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energy bands. The energies where the MAE originates are bound to within 2 eV 
below the Fermi energy, while at EF itself only very small contributions are found. 
The anisotropy of the bands themselves extends down to about 3.5 eV below EF and 
well above EF, but the deviations between the different IBZ cancel out in the DOS 
outside the above mentioned 2 eV interval. 

In summary, the MAE seems to originate from regions quite constrained both in 
k space and energy. Sampling of these regions with high precision might already be 
sufficient to account for most of the MAE but the method of special directions is not 
appropriate for this. There are other, more promising techniques, in particular the 
h e a r  analytic tetrahedron method in its adaptations for the Green function method 
(Coleridge er af 1982, Lambin and Vigneron 1984). This has yet to be installed in the 
framework of our programs. 

4. Conclusions 

We have developed a method to treat magnetic symmetry in spin-polarized calcula- 
tions in a systematic way. The method of Green functions turns out to require some 
care as compared to the usual band structure methods because of the anti-unitary 
transformations involved. The integral over the Brillouin zone is reduced to the 
smallest possible amount of numerical work. In addition, certain matrix properties of 
the scattering path operator, a representation of the Green function, follow directly 
by considering the explicit forms of some of the transformation matrices. 

An application to the magnetocrystalline anisotropy of Fe shows that the degen- 
eracies in our calculation are correct and maps out the regions in k space and energy 
where the magnetic anisotropy energy originates; however, the lack of a suitable in- 
tegration scheme prevents us at present from obtaining a reasonable numerical value 
for this quantity. The use of better algorithms might help to overcome this deficiency 
in future calculations. 
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Appendix 1. The t matrix under time reversal 

The behaviour of the single-site 1 matrix under time reversal B requires special 
consideration since 1 is influenced by this operation even in the case of a &invariant 
single-site Hamiltonian A,. Indicating operators by hats, we have 

tit H J  = H$ (AI) 

i(.) = q + q ( Z - H , ) - ' q  (M) 
e + i ( z ) e  = vs+ i/,(.* - Hs)-lq = it(.). (W 
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Thus under time reversal, the 1 operator is replaced by its Hermitean adjoint. This 
has to do with the fact that the retarded and advanced boundary conditions of the 
Green functions are interchanged by time reversal. 

Let H J  denote a single-site Hamiltonian with a BeR in a specified direction (the 
arrow indicates the direction of the magnetic field and has nothing to do with the 
spin variables). b changes &Id into fi: because the direction of Be, is reversed. A 
transformation with Q now yields 

G Hbmiandinget and P Weinbeeer 

O+HJb = Hi (A4) 
i t ( 2 )  = e' + i g ( Z  - H y Q t  (W 
d+i ' ( z )b=  f PJ(2*  - H ; ) - l q  = [ i ' ( z ) ] ' .  (W 

2;+,i'C,, = 9. ('47) 

On the other hand, a twofold rotation C,, perpendicular to Be, also changes k! 
into fii, thus 

In matrix representation, equations (A6) and (A7) are of the form (see appendix 2) 

11' = D(0- I )  tl' D'(0)  
1' = D(C?;') 1' D(c!,I) .  (A*) 

The inverse of the twofold rotation is shown explicitly to keep track of the phase 
factors which arise in the half-integral representations of the rotation group. The 
combination of the equations in (AS) yields 

D(C,;') tr  D(C,,) = D(6- I )  <IT D'(0) 

tT = D(C?,o-') t'T~D*(OC21-I). (A101 

(A91 
where we have made use of the identity D + ( S )  = P ( 0 - l ) .  Alternatively, equation 
(A9) can bc written as 

In the single-site case, which apart from the magnetic field is assumed to be spherally 
symmetric, we can always choose the axis of C,, to lie in the zy plane. Then the 
transformation matrix D(  C2,0-'), in a relativistic basis as defined below, is diagonal 
with elements ( - l ) ' - P t ' / '  e-jloU, where a is the angle between the rotation axis 
and the z axis. Thus the matrix elements in equation (A10) are related by 

l - p t l / ?  -izop (All) l't#'-1/2 i.?a@' e LP,dPJ = (-1) e d p l , l ( p  (-1)- 
which strongly resembles the usual reciprocity relation in the absence of a magnetic 
field. Tamking the field to point in the 3 direction, the only elements that do not vanish 
are those with I' = I .  I' = I rt 2 and p' = [L (Feder et a/ 1983, Strange et a/ 1984), so 
the phase factors in equation (Al l )  cancel and the t matrix is symmetric. For other 
orientations of Be,, this is in general no longer the case. One can also see this from 
the fact that the single-site 1 matrix for any chosen orientation of the magnetic field 
can be obtained from that of another one by a unitary transfonnation. Pansforming 
a symmetric matrix with a unitary matrix in general destroys the symmeuy. 

The fact that the S and t matrices can be symmetric is a consequence of time 
reversal symmetry of the Hamiltonian which shows up in the reciprocity of the  2 
matrix (see e.g. Newton 1966). However, we see tha t  the symmetry of the f matrix 
still holds when the time reversal symmetry is broken by a magnetic field of uniform 
orientation, provided that the axis of quantization coincides with the field orientation. 
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Appendix 2. Matrix representation of antilinear transformations 

The operation of time reversal as well as products of it with any spatial transformation 
are anti-unitary, i.e. unitary and antilinear. An antilinear operator K has the property 

I?(a4+ b+) = a'kr$+ b ' k +  ('412) 

where 4,  Q are vectors in the space on which k is defined, and a,  b are complex 
numbers. The use of antilinear operators requires some care since the usual bra-ket 
symbols are meaningless in this case (see e.g. Messiah 1961). We define the matrix 
representation of the time reversal operation to be 

D i j ( e )  = ( + i , Q r $ j )  ('413) 

with some basis {4i}. Matrix transformations with antilinear operations are of the 
form 

2 = QAQ-1 (operators) 

A' = D ( e )  A* D'(0 - ' )  (matrices). ('414) 

The complex conjugations obey a formal rule which is generally valid. Let us call 
the matrix representation of an antilinear operator an antilinear matrix. If such an 
antilinear matrix occurs in a product of several transformation matrices, then all 
the matrices on its right-hand side, linear or antilinear, have to be taken complex 
conjugate. This implies that to the right of an odd number of antilinear matrices, 
complex conjugation occurs, whercas to the right of an even number of antilinear 
matrices everything is unchanged. This rule arises from the antilinear property of the 
operators which changc complex numbers into their conjugates; it also applies to the 
magnetic co-representations of the magnetic groups (see e.g. Bradley and Cracknell 
1972). From 8 P '  = 1 and the  fact that the matrix D ( 8 )  is unitary, it follows that 

o(e)o*(s-l) = 1 

D*(o-') = Df(0) .  

Throughout this work, spin spherical harmonics are used as basis functions which are 
defined as 

x.,,(fl) = C(Ll/Z,j; F - s,s) Y+-Afi) x, ('417) 
s = i 1 / 2  

where xr are the usual basis spinors. The various quantum numbers are related by 
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For the spherical harmonics, the Condon and Shortley phase convention is used. With 
the definition of the time reversal operator, 

G HLirmandinger and P Weinberger 

0 = -io Y K (-421) 

where k is the complex conjugation operator, the matrix representation of 6 in the 
basis of the xnp is given by 

(-422) D,,,, , , , ,(0) = i6Kx~6p,-,,tsx(-1) P+1/2 .  

The next step is to set up the transformation matrix for the operation C, = C2L0-iL 
The unitaly rotation matrices in the CondonShortley phase convention are given 
by Altmann (1986). By restricting the axis of C,, to be perpendicular to the z 
direction, with OL denoting its angle to the r axis, the matrix D(C,,) for half-integral 
representations j = In1 - 1/2 is given by 

The matrix representation of the inversion is the parity, given by ( - l ) I ,  viewed as a 
diagonal matrix. The matrix D( C, ) is thus diagonal and given by 

Its inverse is given by D'(C;') = Dt(C,). 
For the sake of completeness, we also give the matrices in the non-relativistic 

case. The time reversal operator is then simply the complex conjugation operator k. 
In the basis of spherical harmonics, and employing again the Condon and Shortley 
convention, 

Appendix 3. Transformation of the structure constants 

The free Green [unction in a lattice corresponding to a certain k vector can be 
written as (Kohn and Rostoker 1954) 

1 G ( k , r  - T ' )  = -- 
7 n  

e x p [ i ( &  + k ) ( ~  - r')] 
(If, + k)2 - E ~ 

' 

If g is some point operation which leaves the lattice invariant, then 

G ( g k , g ( s - r ' ) ) =  G ( ~ , T - T ' ) .  
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The structure constants BLL,(k ,  E )  are defined by the expansion 

x YL( i) Y& ( P )  for r < r' < vi ( B O )  

(Kohn and Rostoker 1954), where IC = and r; is the radius of the sphere 
inscribed into the WignerSeitz cell. Using the invariance equation (A29) in the 
expansion ( B O )  and the transformation properties of the spherical harmonics, 

Y" = g-'yl,(i.) = CYm.(i.) D!d,(g-') ('431) 
m' 

it is clear that the structure constants must transform m 
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